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In-network Aggregation for DT
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Ø With the increasing complexity of machine learning (ML) applications, the scale of ML 

tasks grows explosively

Ø Distributed training is proposed to meet the needs of training large-scale ML tasks

Ø Communication overhead has become the main bottleneck

Ø In-network Aggregation: utilize programmable switches to aggregate gradients within 

the network



Problem: Switch Memory Limitation
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How to aggregate 
with limited 

switch memory?

Researchers

ØSwitch memory is used to buffer the intermedia aggregation value

ØCurrent programmable switch has limited on-chip memory
Ø Intel Tofino 1: 22MB

Ø Intel Tofino 2: 64 MB

ØSize of popular DNN models usually exceeds the size of switch memory
Ø ResNet-50: 98MB

Ø VGG-16: 528MB 



Existing Solution
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Incoming gradient fragments
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Increase Memory Size
Ø Directly increasing the on-chip memory size

Ø TEA (SIGCOMM 20): utilizing external server memory to extend

Memory Sharing Scheme
Ø ATP (NSDI 21): manage and reuse the switch on-chip memory

High cost!

Additional latency!



A Motivating Example
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Ø Memory sharing scheme requires gradient fragments arriving at switches simultaneously
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A Motivating Example
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Ø Asynchronously arriving gradient fragments will increase the aggregation overhead of the PS
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A Motivating Example
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Ø The aggregation overhead of the PS is 7 



A Motivating Example
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Ø Each switch buffers sub-model gradient to collaborative perform in-network aggregation
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A Motivating Example
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Ø The aggregation overhead of the PS is 3 (optimal) 
Ø Incur additional scheduling cost?



GOAT Overview
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Ø Where to buffer sub-model 
gradients?

Ø In which node to aggregate 
gradients?

Control plane

Data plane
ØModel partition

ØGradient filtering

ØGradient aggregation

ØGlobal aggregation



Problem Formulation
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ØParameter server: 𝜶

Parameter Server Architecture

ØWorker set: 𝑾 = {𝒘𝟏, 𝒘𝟐, … ,𝒘 𝑾 }

DNN Model Training
ØGradient set of sub-model: 𝑮 = {𝒈𝟏, 𝒈𝟐, … , 𝒈 𝑮 }

Programmable Network
ØProgrammable switch set: 𝑺 = {𝒔𝟏, 𝒔𝟐, … , 𝒔 𝑺 }



Problem Formulation
Ø Objective: minimize the communication overhead

Ø Non-aggregated gradients sent from workers to aggregation nodes

Ø Aggregated gradients sent from switches to the PS

Ø Switch memory constraint 
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Ø Sub-model aggregation constraint

Ø Aggregation node constraint 

Ø Assignment constraint 
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Algorithm Design
Ø Convert the problem into an equivalent maximization problem

Ø So we only need to consider the total distance from switches to the PS
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Algorithm Design
Ø Solve the converted problem with a 

knapsack-based randomized rounding 
algorithm
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Ø Relax the converted LP and obtain the 
optimal solution

Ø Assign switches for sub-model gradients with 
knapsacks

Ø Determine aggregation nodes for workers’ 
sub-model gradients according to switch 
assignment
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Evaluation
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ØHow fast can GOAT accelerate the distributed training tasks?
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Testbed

Simulation
ØCan GOAT handle the large-scale distributed task?

ØHow much can GOAT reduce the aggregation overhead?

ØCan GOAT handle the network dynamic?



Evaluation: Setup
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Ø9 servers 
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Topology  

Workload  
Ø2 DNN models: ResNet-18(44MB) and ResNet-50 (98MB)

Ø3 Wedge100BF-32x programmable switches

ØDataset: Cifar-100

ØAll connected with 100Gbps links



Evaluation: Setup
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Ø Geryon (INFOCOM 20): design a communication scheduling scheme without in-network 
aggregation
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Benchmark    

Ø ATP (NSDI 21): perform in-network aggregation in the first encountered aggregation 
node with available memory capacity

Ø ESA: design a priority-based memory preemption mechanism for in-network 
aggregation



Evaluation: Throughput
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Ø Each distributed training task contains 8 workers 

Ø GOAT increases up to 53.3% in training throughput



Evaluation: Accuracy
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Ø Record the test accuracy of training tasks in each epoch

Ø GOAT speeds up distributed training by 1.77x



Evaluation: Overhead
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Ø Vary the number of workers from 4 to 16

Ø GOAT reduces aggregation overhead of the PS by 93.8%



Evaluation: Scalability
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Ø Evaluate GOAT with two practical topologies and more workers

Ø GOAT reduces communication overhead by 63.1%



Evaluation: Network Dynamic
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Ø Vary the sending rate of workers to simulate network dynamic

Ø GOAT always achieves the least communication overhead



Summary
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Goal
Ø Minimize the communication overhead of distributed training tasks with collaborative in-

network aggregation.

Challenges
Ø Sub-model gradient buffering

Ø Aggregation node selection

Ø Switch memory limitation

Solution
Ø Knapsack-based randomized rounding algorithm with a constant approximation ratio
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Thank you!
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