GOAT: Gradient Scheduling with
Collaborative In-Network Aggregation for
Distributed Training

Jin Fang
Gongming Zhao, Hongli Xu, Zhuolong Yu, Bingchen Shen, Liguang Xie

\4
JOHNS HOPKINS Z/

UNIVERSITY

In-network Aggregation for DT

» With the increasing complexity of machine learning (ML) applications, the scale of ML
tasks grows explosively

> Distributed training is proposed to meet the needs of training large-scale ML tasks
» Communication overhead has become the main bottleneck

» In-network Aggregation: utilize programmable switches to aggregate gradients within
the network

Parameter Servers

O PyTorch

® Tensor

=
[
a
L
|
i

)
id
5|
.
)
L

&
®
[4
™ |
@
al
L &y
>
i B SSO
W
T { & H
1 = }
b - 0
oy ekl =
I

Workers

Background

Problem: Switch Memory Limitation

» Switch memory is used to buffer the intermedia aggregation value

» Current programmable switch has limited on-chip memory

> Intel Tofino 1: 22MB
> Intel Tofino 2: 64 MB

» Size of popular DNN models usually exceeds the size of switch memory
» ResNet-50: 98MB

> VGG-16: 528MB
'S

How to aggregate
with limited
switch memory?

Researchers

Background

Existing Solution

Increase Memory Size

> Directly increasing the on-chip memory size High cost!
» TEA (SIGCOMM 20): utilizing external server memory to extend Additional latency!

Memory Sharing Scheme
» ATP (NSDI 21): manage and reuse the switch on-chip memory

—»e oo [N+1(| 1 » Mem 1

—e oo [N+2|| 2 » Mem 2

M| o+ [3] 2 [1 Cmodn)

Incoming gradient fragments

—ee«| 2N || N » Mem N

Switch

Background

A Motivating Example

» Memory sharing scheme requires gradient fragments arriving at switches simultaneously

Motivation

A Motivating Example

» Asynchronously arriving gradient fragments will increase the aggregation overhead of the PS

Motivation

A Motivating Example

» The aggregation overhead of the PSis 7

G [B[] . B A S % [
o[8 [Ad . [. [Co] 8. [B

(4 [D 9 239 2% 13 [[[N alal s Glc

Incoming gradients Output gradients

Motivation

A Motivating Example

» Each switch buffers sub-model gradient to collaborative perform in-network aggregation

o

/\

B, B, B B,

C C
=) &)) &)
Wl WZ W3 W4

Motivation

A Motivating Example

» The aggregation overhead of the PS is 3 (optimal)
» Incur additional scheduling cost?

AR AEREE
eeleEREEE G ElRICE
DnEEEE TALC

Incoming gradients Output gradients

Motivation

GOAT Overview

Control plane

» Where to buffer sub-model
gradients?

» In which node to aggregate
gradients?

Data plane

> Moo
» Grad

» Grad

el partition
ient filtering

lent aggregation

» Global aggregation

Overview

Control Plane

DNN Model Partition Network Resource

(1). Policy Calculation (Sec. Ill)

I
I
I
I
Querying |
I
I
I
I

Publishing

________________________________ -
Data Plane |
4 A N N |
% (3). Gradient|M2t<"{(4). Gradient | obal l

Filtering Aggregation (5).Glo .a
Model Sub-models I Aggregation I
(2).Model Partition Unmatch |
\ J J \ J i
Workers Programmable Switches The PS |

10

Problem Formulation

Parameter Server Architecture

» Parameter server: «

> Worker set: W = {wq, wy, .., wy}

DNN Model Training
> Gradient set of sub-model: ¢ = {g4, 9, ..., 9/¢}

Programmable Network

> Programmable switch set: § = {51, s, ..., 55/}

. 11
Problem Formulation

Problem Formulation

» Objective: minimize the communication overhead

» Non-aggregated gradients sent from workers to aggregation nodes

» Aggregated gradients sent from switches to the PS

min y:(y: y: yfuag'Dw(S)‘*‘Zﬂ?;‘Ds(O‘))‘b(g)

9€G weW seSu{a}

» Sub-model aggregation constraint

» Aggregation node constraint

» Assignment constraint St 4
» Switch memory constraint

Problem Formulation

(Y >,
seSuU{a}

> Ywg =1
seSU{a}
Yw.g < Ty,
> wy-blg) < Bls),
geqG
z; € {0,1},

| Yw.g € 10,1},

seS

Vg e G
YweW,ge G

Vwe W,ge G,s e SU{a}
Vs e S

Vge G,se SU{a}
Vwe W,ge G,se SU{a}
(1)

12

Algorithm Design

» Convert the problem into an equivalent maximization problem

> So we only need to consider the total distance from switches to the PS

min Sj(Sj Sj Yo.g " Dw(s) + Zx; - Dg(a)) - b(g) » max » Y (Y Yn.g — Tg) - Ds(a) - b(g)

9€G weW seSu{a} s€ES geG seS weW
g
> xg =1, Vge G (
s€SU{a} ses%{a}lg =1, Vge G
>0 Yuwg =1, VweW.geG yi =1 weW,geG
seS0fay seg{a} Yug=1 YweWged
St. 4 Ywg S Ty Vwe W,ge€ G,seSU{a} St Uiy =T, Ywe W, g€ G,s € SU{a}
QEZGfﬁg -b(g) < B(s), VseS %:(5 -b(g) < B(s), VseS
geG
g € 10,1}, Vge G,seSU{aj x5 € {0,1}, Vg € G,s € SU{a}
\ y'fu,g E {07 1}7 vw 6 W,g E G, S E S U {O{} \ yz},g e {0! 1}! V'U.-' E ”',g E G,S E S U {()_'}
(D) (4)

Algorithm "

Algorithm Design

> Solve the converted problem with a
knapsack-based randomized rounding
algorithm

> Relax the converted LP and obtain the
optimal solution

» Assign switches for sub-model gradients with
knapsacks

» Determine aggregation nodes for workers'’
sub-model gradients according to switch
assignment

Algorithm 1 KRGS: Knapsack-based Randomized Rounding
for Gradient Scheduling
1: Step 1: Solving the Relaxed Problem
2: Construct a LP by replacing with z3,y;, . € [0,1].
3: Obtain the optimal solution {7y, y;, ,}-
4. Step 2: Assigning Switches for Sub-Model Gradients
s | gradient g € G do

6: Lat k(g) = | D =}
seS
7. Put zy (Vs € S) into k(g) knapsacks with min-max
sum.
. for each knapsack a do
9: Let A denote the variables in knapsack a.
0: Calculate S, = sch Ty |
1: Choose s for 73, € A with probablllty 5
12: Set 7, = 1 for chosen aggregation node s.

3: Let S(g) = {s € S|z; = 1} denote the set of switches
responsible for aggregating sub-model gradient g.
14: Step 3: Determining Aggregation Nodes for Workers’
Sub-Model Gradients

15: for each worker w € W do

16: for each gradient g € G do

17: Set the probabilities of selectlng switch s € S(g)
and the PS to p,(s) = z" and p,(a) = 1 —
D ces(g) Pn(8), respectively.

18: Select an aggregation node s € S U {a} with the
probability of p,,(s).

Algorithm

Evaluation

Testbed

» How fast can GOAT accelerate the distributed training tasks?

» How much can GOAT reduce the aggregation overhead?

Simulation
» Can GOAT handle the large-scale distributed task?

» Can GOAT handle the network dynamic?

Evaluation

15

Evaluation: Setup

Topology

> 9 servers
» 3 WedgelO0BF-32x programmable switches
» All connected with 100Gbps links

Workload
> 2 DNN models: ResNet-18(44MB) and ResNet-50 (98 MB)

> Dataset: Cifar-100

Evaluation

16

Evaluation: Setup

Benchmark

» Geryon (INFOCOM 20): design a communication scheduling scheme without in-network
aggregation

> ATP (NSDI 21): perform in-network aggregation in the first encountered aggregation
node with available memory capacity

> ESA: design a priority-based memory preemption mechanism for in-network
aggregation

. 17
Evaluation

Evaluation: Throughput

» Each distributed training task contains 8 workers

—)()()
=Z3 GOAT
EEEE] ESA
=3 ATP
E= Gervon

= 400/
= 300
200

[—

—

- -

p—

S—
M

Throughput ((images /~,

0

Re sN(ot~ lb ResNet-34 ResNet-50
\Y I()d(,ls

» GOAT increases up to 53.3% in training throughput

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

18

Evaluation: Accuracy

» Record the test accuracy of training tasks in each epoch

1 1
% :()(ﬂ'
E =
+— - -— —@‘ (;()A'l‘
S | —=- ESA < —-&- ESA
= 0.2 =pns ATP =de+ ATP
—{=- Gervon : == - Geryon
()() 200 400 600 800 1000 0(] 300 600 900 1200 1500
Time (s) Time (s)
(a) ResNet-18 (b) ResNet-50

» GOAT speeds up distributed training by 1.77x

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Evaluation: Overhead

» Vary the number of workers from 4 to 16

300

(J(10

400

200

()\'orhea(l of the PS (M B)

—
S

FZZ] GOAT

EEE ESA
ES] ATP

E= Gervon

R
No. of Workers

(a) ResNet-18

Overhead of the PS ('.\IB')

1600

1‘7(){)

800

400

4=
e
L

243 COAT
EES ESA
=3 ATP
E= Gervon

8
No. of \\ull\(ls

—
-

(b) ResNet-50

» GOAT reduces aggregation overhead of the PS by 93.8%

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

fif:
“~5;
z:‘éé
;_‘i
a

20

Evaluation: Scalability

» Evaluate GOAT with two practical topologies and more workers

—40
30
20

L0)

Comm. Overheac

()

=23 GOAT
ESEE] ESA
S ATP
E= Gervon

No. of Workers

(a) Leaf-Spine

—

- -

1 (GB
‘y-_’.

Comm. Overheac

100)

=21 GOAT

| EEE] ESA

E=1 ATP
E=2 Gervol

1

» GOAT reduces communication overhead by 63.1%

(b)

50 60 0
No. of Workers

Fat-Tree

21

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Evaluation: Network Dynamic

» Vary the sending rate of workers to simulate network dynamic

= 60

Comm.

1 EEEE] ESA
1= (tl'vuu

[Z3A GOAT
=3 ATP

Standard Deviation (o)

(a) Leaf-Spine

= 160

—
)
—
S—

Comm. Overhead (G

- ATP

o0
—
—

40

—
—
L

ZZ] GOAT
EE=E] ESA

B Gervon

Standard Deviation (o)

(b) Fat-Tree

» GOAT always achieves the least communication overhead

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

22

Summary

Goal

» Minimize the communication overhead of distributed training tasks with collaborative in-

network aggregation.

Challenges
» Sub-model gradient buffering
» Aggregation node selection

» Switch memory limitation

Solution

» Knapsack-based randomized rounding algorithm with a constant approximation ratio

23
Summary

Thank youl!

IEEE/ACM IWQoS 2023

Committee, Reviewers, Volunteers

My Advisors and Collaborators!

Jin Fang
fangjin98@mail.ustc.edu.cn
www.fangjin.site

24

mailto:fangjin98@mail.ustc.edu.cn

