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In-network Aggregation for DT

» With the increasing complexity of machine learning (ML) applications, the scale of ML
tasks grows explosively

> Distributed training is proposed to meet the needs of training large-scale ML tasks
» Communication overhead has become the main bottleneck

» In-network Aggregation: utilize programmable switches to aggregate gradients within
the network
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Problem: Switch Memory Limitation

» Switch memory is used to buffer the intermedia aggregation value

» Current programmable switch has limited on-chip memory

> Intel Tofino 1: 22MB
> Intel Tofino 2: 64 MB

» Size of popular DNN models usually exceeds the size of switch memory
» ResNet-50: 98MB

> VGG-16: 528MB
'S

How to aggregate
with limited
switch memory?
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Existing Solution

Increase Memory Size

> Directly increasing the on-chip memory size High cost!
» TEA (SIGCOMM 20): utilizing external server memory to extend Additional latency!

Memory Sharing Scheme
» ATP (NSDI 21): manage and reuse the switch on-chip memory
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A Motivating Example

» Memory sharing scheme requires gradient fragments arriving at switches simultaneously

Motivation



A Motivating Example

» Asynchronously arriving gradient fragments will increase the aggregation overhead of the PS

Motivation



A Motivating Example

» The aggregation overhead of the PSis 7
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A Motivating Example

» Each switch buffers sub-model gradient to collaborative perform in-network aggregation
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A Motivating Example

» The aggregation overhead of the PS is 3 (optimal)
» Incur additional scheduling cost?
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GOAT Overview

Control plane

» Where to buffer sub-model
gradients?

» In which node to aggregate
gradients?

Data plane
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Problem Formulation

Parameter Server Architecture

» Parameter server: «

> Worker set: W = {wq, wy, .., wy}

DNN Model Training
> Gradient set of sub-model: ¢ = {g4, 9, ..., 9/¢}

Programmable Network

> Programmable switch set: § = {51, s, ..., 55/}

. 11
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Problem Formulation

» Objective: minimize the communication overhead

» Non-aggregated gradients sent from workers to aggregation nodes

» Aggregated gradients sent from switches to the PS

min y:(y: y: yfuag'Dw(S)‘*‘Zﬂ?;‘Ds(O‘))‘b(g)
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» Sub-model aggregation constraint

» Aggregation node constraint

» Assignment constraint St 4
» Switch memory constraint

Problem Formulation
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Algorithm Design

» Convert the problem into an equivalent maximization problem

> So we only need to consider the total distance from switches to the PS

min Sj( Sj Sj Yo.g " Dw(s) + Zx; - Dg(a)) - b(g) » max » Y (Y Yn.g — Tg) - Ds(a) - b(g)

9€G weW seSu{a} s€ES geG seS weW
g
> xg =1, Vge G (
s€SU{a} ses%{a}lg =1, Vge G
>0 Yuwg =1, VweW.geG yi =1 weW,geG
seS0fay seg{a} Yug=1  YweWged
St. 4 Ywg S Ty Vwe W,ge€ G,seSU{a} St Uiy =T, Ywe W, g€ G,s € SU{a}
QEZGfﬁg -b(g) < B(s), VseS %:( 5 -b(g) < B(s), VseS
geG
g € 10,1}, Vge G,seSU{aj x5 € {0,1}, Vg € G,s € SU{a}
\ y'fu,g E {07 1}7 vw 6 W,g E G, S E S U {O{} \ yz},g e {0! 1}! V'U.-' E ”',g E G,S E S U {()_'}
(D) (4)

Algorithm "



Algorithm Design

> Solve the converted problem with a
knapsack-based randomized rounding
algorithm

> Relax the converted LP and obtain the
optimal solution

» Assign switches for sub-model gradients with
knapsacks

» Determine aggregation nodes for workers'’
sub-model gradients according to switch
assignment

Algorithm 1 KRGS: Knapsack-based Randomized Rounding
for Gradient Scheduling
1: Step 1: Solving the Relaxed Problem
2: Construct a LP by replacing with z3,y;, . € [0,1].
3: Obtain the optimal solution {7y, y;, ,}-
4. Step 2: Assigning Switches for Sub-Model Gradients
s | gradient g € G do

6: Lat k(g) = | D =}
seS
7. Put zy (Vs € S) into k(g) knapsacks with min-max
sum.
. for each knapsack a do
9: Let A denote the variables in knapsack a.
0: Calculate S, = sch Ty |
1: Choose s for 73, € A with probablllty 5
12: Set 7, = 1 for chosen aggregation node s.

3:  Let S(g ) = {s € S|z; = 1} denote the set of switches
responsible for aggregating sub-model gradient g.
14: Step 3: Determining Aggregation Nodes for Workers’
Sub-Model Gradients

15: for each worker w € W do

16:  for each gradient g € G do

17: Set the probabilities of selectlng switch s € S(g)
and the PS to p,(s) = z" and p,(a) = 1 —
D ces(g) Pn(8), respectively.

18: Select an aggregation node s € S U {a} with the
probability of p,,(s).

Algorithm



Evaluation

Testbed

» How fast can GOAT accelerate the distributed training tasks?

» How much can GOAT reduce the aggregation overhead?

Simulation
» Can GOAT handle the large-scale distributed task?

» Can GOAT handle the network dynamic?

Evaluation
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Evaluation: Setup

Topology

> 9 servers
» 3 WedgelO0BF-32x programmable switches
» All connected with 100Gbps links

Workload
> 2 DNN models: ResNet-18(44MB) and ResNet-50 (98 MB)

> Dataset: Cifar-100

Evaluation
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Evaluation: Setup

Benchmark

» Geryon (INFOCOM 20): design a communication scheduling scheme without in-network
aggregation

> ATP (NSDI 21): perform in-network aggregation in the first encountered aggregation
node with available memory capacity

> ESA: design a priority-based memory preemption mechanism for in-network
aggregation

. 17
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Evaluation: Throughput

» Each distributed training task contains 8 workers
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» GOAT increases up to 53.3% in training throughput

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary
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Evaluation: Accuracy

» Record the test accuracy of training tasks in each epoch
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» GOAT speeds up distributed training by 1.77x

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary



Evaluation: Overhead

» Vary the number of workers from 4 to 16
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» GOAT reduces aggregation overhead of the PS by 93.8%

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary
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Evaluation: Scalability

» Evaluate GOAT with two practical topologies and more workers
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» GOAT reduces communication overhead by 63.1%
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Evaluation: Network Dynamic

» Vary the sending rate of workers to simulate network dynamic
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» GOAT always achieves the least communication overhead

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary
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Summary

Goal

» Minimize the communication overhead of distributed training tasks with collaborative in-

network aggregation.

Challenges
» Sub-model gradient buffering
» Aggregation node selection

» Switch memory limitation

Solution

» Knapsack-based randomized rounding algorithm with a constant approximation ratio
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