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Collective Communication in DT

» With the increasing complexity of machine learning (ML) applications, the scale of ML
tasks grows explosively

» Distributed training is proposed to speed up the training of large-scale ML tasks

» Placing workers on GPUs of machines to perform one DT task, where workers

communicates collectively to synchronize gradients/parameters
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Problem: Resource Fragmentation

» One machine is equipped with multiple GPUs
(e.g., 8 GPUs)

» The number of workers of a DT job varies

> DP = 2 -> 2 workers
> TP = 8 -> 8 workers
» DP =2 and TP =8 -> 2*8=16 workers

> The arrival time of DT jobs is unpredictable ({9 @
» There exists a lot of fragmented idle GPUs, ’

How to decrease the
influence of resource
fragmentation?

leading to low resource utilization Researchers
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Existing Solution

Consolidation-First Placement

> Elasticflow? (ASPLOS 23): allocate the resource at the scale of machine
Resource oversubscription

Fragmentation-First Placement
» HiveD? (OSDI 20): priority place placing workers in fragmented machines

Large comm. overhead

Background



A Motivating Example

> Collective communication operations take multiple steps, where each step contains different
communication pairs and amounts

Workers in one DT job have different communication
pattern.

Can we utilize this
feature?
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A Motivating Example-Elasticflow

» Consolidation placement to minimize the amount of cross-machine traffic
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A Motivating Example-HiveD

» Using fragmented machines to minimize the number of used machines

K2 ll-gather (stage 4)
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A Motivating Example-Titan (Ours)

» Consider the map of workers to GPUs according to collective communication algorithms
> Avoid the use of idle machines
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Titan: Problem Formulation
Network Model

» Machine set: § = {s4,s5, ..., 5|5/}, each with K GPUs
» Non-ldle machine set: S, c §
> |dle machine set: 5, c S

> Available bandwidth between machines s and s": P, € 7Z

Communication Pattern

> Worker set: N = {nq,ny, ..., ny}

» The traffic amount between worker pair (n,n") in phase t : C} ,, € 7

Problem Formulation



Titan: Problem Formulation

» Objective
1. Minimize the number of Idle-machines: reduce resource fragmentation

2. Minimize the number of total machines: reduce the amount of cross-machine traffic

min O; = Z Ys
SES,
min Oy = Zys
sesS
» Placement constraint ;an =1, Vn e N
M Z mf], S RS, Vs € S
> Resource constraint neN /
st.d X x wnay CL <Py, Vs,s€SteT
. . neNn'eN
» Bandwidth constraint yfz xi VseSneN
x5 € {0,1}, Vse S,nme N
\yse{071}7 VSGS

ey
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Titan: Algorithm Design

» Convert the problem into an equivalent maximization problem

» So we can construct the submodular function for the greedy algorithm

min O; = Z Vs
SESn »
min Oy = Zys
ses
( E iL’Z = 1) Vn & N
seS , L
Z m%SRsa VSES ZSCBn ,
neN se
St 2 2 Tn z8,-Ct . < Poy, Vs,s €S,teT . neZng <R,,
Ys > Ty, Vse S,neN ZN ZN z;, - x5 - Cp
neNn’e
z;, € {0,1}, Vse S,ne N 25 € {0,1},
\ySE{O,l}, VSES

(1

Algorithm

seES,

seS

S Ps,s’a

max O; = Cmax — »_ C(N)

max 02 = Cmax — ZC(NS)

Vne N
Vse S
Vs,s' € S,teT

Vse S,ne N
(3)
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Algorithm 1 Search for Feasible Worker Set
1: Step 1: Initialization
Let feasible worker set A(s) = () for machine s.
Let available worker set N, = N — N.
Step 2: Iterative update feasible worker sets according
to collective communication
Use C; j to denote the existing communication overhead
between machines s and s’.

= 9p

Titan: Algorithm Design

o

> Solve the converted problem with a 6 for 1 € . do
. S ( 4 d

submodular-based greedy algorithm Al
9: if sz,n’ -I-Cf,f/ < P, o then
10: A(s) « A(s)+n
11: end if

. 12: end for
> Search the feasible worker set for each 13 end for
h. b d dth t . t 14: end for
machine to guarantee anawil constrain 15: Output the feasible worker set A(s) for machine s.

Algorithm 3 The Overall Algorithm
1: Step 1: Minimizing the Number of Deployed New

> Merge the worker set with submodular

function to minimize the number of used idle Racks
. 2: Initiate Ny, Vs € S,, by randomly distributing workers.
machines + Tnitiate ®, < 0,
4: Calculate ®,, on idle machine set S,, with Alg. 2.
5. Step 2: Minimizing the Total Number of Deployed
» Update and merge the worker set to Racks
minimize the number of used machines ¢ Initlate J,,¥s € 57 U @n by randomly disiributing

7: Initiate ® « 0.

8: Calculate ® on machine set Sy U ®,, with Alg. 2.
9: Step 3: Determining the Deployment of Workers
10: for N € ® do

11:  Setzd =1,Vn e N;,s€S.

12: end for

Algorithm



Algorithm 2 Submodular-based Algorithm
1: Step 1: Initialization

et et et 2: Initiate NV,,Vs € S by randomly distributing workers.
Titan: Algorithm Design :na:ss
4: Step 2: Iterative Merging Worker Subsets
5: while |®| < K — 1 do
» Solve the converted problem with a 6s  iSet inpr—i0,api «—0
b d | b d d | .th 7. for se€ S,, do
submodular-pased greedy aigorithm 8- forne N, — ® do
9: tmp <+ H(® U {n})
10: if tmp > opt then
11: opt < tmp, N* < N* + {n}
> Search the feasible worker set for each 3 enfl“g);f
machine to guarantee bandwidth constraint i e o
15 S« D+ N*
> Merge the worker set with submodular 16:  Update the feasible worker sets based on the bandwidth
function to minimize the number of used idle it e oL 5 B WIGLIE, £

machines 18: Deploy the remaining workers on one machine (i.e., ® <
®+{N —UpcaN}D-

» Update and merge the worker set to
minimize the number of used machines
> ) Ci.<P,VseS8teT 5)

> Tight approximate ratio (1-1/e) nENEniC N
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Evaluation: Setup

Simulation Topology

> Fat-tree topology with 64 racks, each of which contains 8 machines

» Each machine is equipped with 8 GPUs
» All connected with 100Gbps links

Real-world Traces
» Microsoft cluster: 2-month trace with 69742 jobs

» Shanghai Al lab cluster: 6-month trace with 880740 jobs

Evaluation
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Evaluation: Setup

Benchmark

» Elasticflow’ : consolidate the placed GPUs so that the job is allocated with the highest
possible bandwidth between its workers

» HiveD? : prioritize placing workers in fragmented machines to reduce the machine
fragmentation of the cluster

> Tiresias® : minimize the total network traffic and balance the network load across
machines in the cluster, by profiling the characteristics of different models

) 15
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Evaluation: Fragmentation Rate

» Record the ratio of non-idle machines in the cluster, after a job arrives
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Fig. 4: Machine Fragmentation Rate vs. Timestamp

» Titan reduces machine fragmentation rate by 38.1%
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Evaluation: Comm. Overhead

» Use the HD algorithm and calculate the total communication overhead
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Fig. 5: Communication Overhead vs. Timestamp

> Titan reduces communication overhead of the cluster by 76.4%
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Evaluation: Profit

> Profit relates to No. of jobs, price of the job, No. of used machines and the duration of
each job (See the manuscript for details)
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Fig. 6: Profit Rate vs. Timestamp Fig. 7: Total Profit vs. Timestamp

> Titan improves the total profit by 41.2%~65X
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Summary

Goal

» Minimize the resource fragmentation rate of GPU cluster with non-idle machine-aware

worker placement

Challenges

» Collective Communication constraint

» Resource fragmentation limitation

» Model a multi-subjective non-linear problem
Solution

» Submodular-based greedy algorithm with a tight approximation ratio
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Jin Fang
fangjin98 @ mail.ustc.edu.cn
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